On the Asymptotic Abelian Complexity of Morphic Words

نویسندگان

  • Francine Blanchet-Sadri
  • Nathan Fox
چکیده

The subword complexity of an infinite word counts the number of subwords of a given length, while the abelian complexity counts this number up to letter permutation. Although a lot of research has been done on the subword complexity of morphic words, i.e., words obtained as fixed points of iterated morphisms, little is known on their abelian complexity. In this paper, we undertake the classification of the asymptotic growths of the abelian complexities of fixed points of binary morphisms. Some general results we obtain stem from the concept of factorization of morphisms. We give an algorithm that yields all canonical factorizations of a given morphism, describe how to use it to check quickly whether a binary morphism is Sturmian, discuss how to fully factorize the Parry morphisms, and finally derive a complete classification of the abelian complexities of fixed points of uniform binary morphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-morphic Property of Group

A group is called morphic if for each normal endomorphism α in end(G),there exists β such that ker(α)= Gβ and Gα= ker(β). In this paper, we consider the case that there exist normal endomorphisms β and γ such that ker(α)= Gβ and Gα = ker(γ). We call G quasi-morphic, if this happens for any normal endomorphism α in end(G). We get the following results: G is quasi-morphic if and only if, for any ...

متن کامل

Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity

The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden’s theorem, they proved that if a word avoids Abelian k-powers for some integer k, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian k-powers occur in a word ...

متن کامل

On the Unavoidability of k-Abelian Squares in Pure Morphic Words

We consider a recently defined notion of k-abelian equivalence of words by concentrating on avoidability problems. The equivalence class of a word depends on the number of occurrences of different factors of length k for a fixed natural number k and the prefix of the word. We show that over a ternary alphabet, k-abelian squares cannot be avoided in pure morphic words for any natural number k. N...

متن کامل

Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words

The binomial coefficient of two words u and v is the number of times v occurs as a subsequence of u. Based on this classical notion, we introduce the mbinomial equivalence of two words refining the abelian equivalence. Two words x and y are m-binomially equivalent, if, for all words v of length at most m, the binomial coefficients of x and v and respectively, y and v are equal. The m-binomial c...

متن کامل

Decision Algorithms for Fibonacci-Automatic Words, III: Enumeration and Abelian Properties

We continue our study of the class of Fibonacci-automatic words. These are infinite words whose nth term is defined in terms of a finite-state function of the Fibonacci representation of n. In this paper, we show how enumeration questions (such as counting the number of squares of length n in the Fibonacci word) can be decided purely mechanically, using a decision procedure. We reprove some kno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013